An Overview of the Anemias
Iron Deficiency, Megaloblastic, Hemolytic and Hemoglobinopathies
Deana Hallman, M.D.
ANEMIA

- Definition:
 - A reduction in the red blood cell mass

- Degree of anemia is measured by:
 - Volume of red cells expressed as a percentage of the blood volume - hematocrit (Hct)
 - Plasma concentration of hemoglobin (Hgb)
ANEMIA

- An important indicator of disease, its cause should always be sought.

- Symptoms & signs depend on:
 - Level of hematocrit
 - Mild to moderate anemia - asymptomatic
 - Rate at which anemia developed
 - Rapid onset causes more symptoms
 - Underlying cause
ANEMIA - Symptoms

○ Moderate:
 • Fatigue
 • Dyspnea
 • Palpitations
 • Poor exercise tolerance
 • Dizziness
 • Headaches
 • Tinnitus

○ Severe:
 • Anorexia
 • Indigestion
 • Irritability
 • Difficulty sleeping
 • Difficulty concentrating
 • Abnormal menstruations
 • Impotence, loss of libido
 • Chest pains, myocardial infarction
ANEMIA - Signs

- Pallor
 - Oral mucous membranes
 - Nail beds
 - Conjunctivae
 - Palm creases
- Tachycardia
- Hyperdynamic precordium
- Flow murmurs

- Jaundice
- Splenomegaly

Seen mainly in patients with hemolysis and hemoglobinopathies
ANEMIA – Basic Lab Tests

<table>
<thead>
<tr>
<th>Test</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CBC</td>
<td>Monocytopenia vs. Pancytopenia</td>
</tr>
<tr>
<td>MCV, MCH</td>
<td>Microcytosis, Macrocytosis, Normocytic indexes</td>
</tr>
<tr>
<td>MCHC</td>
<td></td>
</tr>
<tr>
<td>RDW</td>
<td>Anisocytosis (variability in size)</td>
</tr>
</tbody>
</table>
| Retic count| **↓** in primary failure of production
| | **↑** in blood loss, hemolysis |
| Blood smear| Morphology evaluation for abnormalities in shape, size and for presence of RBC inclusions |
ANEMIA - Etiologies

- Blood loss
- Accelerated RBC destruction (hemolysis, hemoglobinopathies)
- Primary failure of RBC production (diminished erythropoiesis or hypoproliferative)
HYPOPROLIFERATIVE ANEMIA

May be subdivided according to the size of the red blood cell:

- Microcytic
- Macrocytic
- Normocytic
HYPOPROLIFERATIVE ANEMIA

Microcytic

- Iron deficiency anemia
- Thalassemia
- Sideroblastic anemia
- Lead poisoning
- Anemia of chronic disease
IRON DEFICIENCY ANEMIA
IRON DEFICIENCY ANEMIA

- Most common anemia worldwide
 - Globally, 50% of anemia

- 841,000 deaths annually worldwide
 - Africa and parts of Asia – 71% of global mortality
 - North America – 1.4% of mortality
IRON DEFICIENCY ANEMIA

- Most frequent cause is BLOOD LOSS
 - Men & postmenopausal women
 - GI bleeding - seek malignancies
 - In 15% patients cause not found
 - Premenopausal women
 - Vaginal bleeding (menses)
 - Parturitional hemorrhage
 - Rare causes
 - hemoptysis, hematuria
IRON DEFICIENCY ANEMIA

○ Increased requirements:
 ● Rapid growth – premature infants, children, adolescents
 ● Pregnancy, lactation

○ Dietary lack

○ Impaired absorption:
 ● Gastric resection
 ● Pancreatic insufficiency
 ● Intestinal malabsorption syndromes
 ○ Tropical and nontropical sprue
 ○ Crohn’s disease of small bowel
 ○ Short bowel syndrome
IRON DEFICIENCY ANEMIA

Clinical features:
- Pica – starch, ice, clay
- Koilonychia – spooning of the nails
- Blue sclerae
- Glossitis – sore tongue
- Cheilosis – fissures at corners of mouth
- Angular stomatitis
- Esophageal webs
IRON DEFICIENCY ANEMIA

- Laboratory features:
 - ↓ MCV, MCH, MCHC
 - ↑ or normal Platelet levels
 - ↓ Serum iron levels
 - ↑ Serum transferrin levels (TIBC)
 - ↓ Serum transferrin saturation (%)
 - ↓ Serum ferritin levels
 - Absent bone marrow iron stores
IRON DEFICIENCY ANEMIA

○ Blood transfusions:
 ● Only if the patient has evidence of cardiac ischemia or failure
 ● Administer with caution in patients with long standing anemia
 ○ They have expanded plasma volumes
 ○ Further increase in intravascular volume triggers congestive heart failure, especially in the elderly
IRON DEFICIENCY ANEMIA

Treatment of choice is oral iron supplements:
- Iron salts vs. complex iron compounds (SR)
 - 150–300 mg elemental iron per day, divided into 3 or 4 doses
 - Total iron deficit estimated by:
 \[
 \text{Iron (mg)} = (15 - \text{patient’s Hgb}) \times 2.3 \times \text{weight (kg)} + 1,000 \text{ (for stores)}
 \]
- 20% develop abdominal pain, nausea, vomiting, diarrhea or constipation
IRON DEFICIENCY ANEMIA

- Parenteral iron therapy only for:
 - Patients with malabsorption
 - Truly intolerant to oral supplements
 - Demand not satisfied with oral supplements alone – chronic bleeding

- Risk of anaphylaxis is 1 %
 - More frequent in women with collagen vascular disease
 - May be fatal despite treatment
IRON DEFICIENCY ANEMIA

- Response to therapy:
 - Increase in reticulocyte count in 4-7 days, peaks in 10 days
 - Hemoglobin increases by 2 g/dl after 3 weeks of therapy

- Duration of therapy:
 - 4-6 months after anemia is corrected
 - Or ferritin levels is above 50 ng/mL
HYPOPROLIFERATIVE ANEMIA

Macrocytic

- Megaloblastic
 - Cobalamin (B_{12}) deficiency
 - Folate deficiency
 - Myelodysplasia
 - Drug-induced megaloblastic anemia
- Nonmegaloblastic macrocytic anemia
 - High reticulocyte count
 - Liver disease
 - Hypothyroidism
MEGALOBLASTIC ANEMIA
MEGALOBLASTIC ANEMIA

- Defect in DNA synthesis affecting rapidly dividing cells in the bone marrow
 - Cells are unable to complete cell division
- Megaloblastic process eventually lead to:
 - Pancytopenia
 - Gastrointestinal problems (weight loss, diarrhea and/or constipation)
- Most common conditions causing megaloblastosis:
 - Folic acid deficiency
 - Cobalamin (B₁₂) deficiency
FOLATE DEFICIENCY

- Poor dietary intake - most common
 - Alcoholics, addicts, elderly, poverty, invalids
- Increased demand or loss
 - Pregnancy, lactation, prematurity (weight <1500 g)
 - Chronic hemolysis, malignancy (of rapid growth)
 - Inflammatory diseases, exfoliative dermatitis
 - Long-term dialysis, liver disease
- Malabsorption
 - Sprue, nontropical sprue, gluten enteropathy
 - Crohn’s disease, short bowel syndrome, amyloidosis
- Antifolate drugs
 - Phenytoin, primidone, tetracycline, sulphasalazine
COBALAMIN (B₁₂) DEFICIENCY

- **Nutritional deficiency**
 - Strict vegetarian diet, poverty, psychiatric disease
- **Malabsorption**: Pernicious anemia - most common
- **Gastointestinal causes**
 - Congenital absence or functional abnormality of IF
 - Total or partial gastrectomy, ileal resection
 - Intestinal diverticulosis, fistula, stricture, blind loop
 - Crohn’s disease, sprue, gluten-enteropathy
 - Zollinger-Elllison, atrophic gastritis, gastric bypass
- **Other causes**
 - Pancreatic insufficiency, alcoholism, HIV infection
 - Radiotherapy to ileum
 - Proton pump inhibitors, colchicine, metformin
PERNICIOUS ANEMIA

- Severe lack of **Intrinsic Factor** due to gastric atrophy
- Common disease in north Europe
 - Associated with:
 - Premature graying, blue eyes, blood type A, HLA-3
 - HLA-B8, B12, BW15 in those with endocrine disease
 - Occurs with autoimmune disorders:
 - Graves’ disease, Hashimoto thyroiditis
 - Vitiligo, Addison’s disease, Hypoparathyroidism
 - Adult-onset hypogammaglobulinemia
 - Diagnosis:
 - Anti-parietal cell Ab in 90% patients, less specific
 - Anti-intrinsic factor Ab in 60%, most specific
 - Schilling test – cumbersome, not done lately
MEGALOBLASTIC ANEMIA

Clinical features:
- Glossitis – sore tongue
- Cheilosis - fissures at corners of the mouth
- Increased pigmentation of nail beds and skin creases
- Lemon-colored skin (jaundice + pallor)
- Mild splenomegaly (due to extramedullary erythropoiesis)
- Neurological manifestations (B\textsubscript{12} deficiency)
NEUROLOGICAL MANIFESTATIONS
In Cobalamin (B_{12}) deficiency

- May be present even without anemia:
 - Posterior column dysfunction
 - Loss of proprioception and vibration sense
 - Wide-based gait, difficulty walking
 - Pyramidal, spinocerebellar, and spinothalamic tract disease
 - Muscular weakness, spasticity, hyper-reflexia, scissor gait
 - Peripheral nerve damage
 - Loss of DT Reflexes, Cranial nerve palsies
 - Dementia, neuropsychiatric disease
MEGALOBLASTIC ANEMIA

- **Laboratory features:**
 - Increased MCV, macrocytosis
 - Leucopenia, thrombocytopenia
 - Low reticulocyte count
 - Low serum haptoglobin levels

- **Blood morphology:**
 - Oval macrocytes, anisocytosis, poikilocytosis
 - Hypersegmented neutrophils

- **Decreased serum levels:**
 - Folic acid
 - Vitamin B_{12}
MEGALOBLASTIC ANEMIA

- Treatment:
 - If pernicious anemia is suspected:
 - Vitamin B$_{12}$ (1000 μg) IM daily for 7 days, then monthly for maintenance (for life)
 - Patients with normal B$_{12}$ absorption:
 - may be given oral/sublingual supplements
 - Folic acid supplements:
 - Orally 1-5 mg daily
MEGALOBLASTIC ANEMIA

- **Response to therapy:**
 - Reticulocytes in 2-3 days, peaks in 8 days
 - Hemoglobin increases within a week
 - Anemia resolves in 2 months

- **Watch out for:**
 - Acute hypokalemia, hyperuricemia, hypophosphatemia
 - Development of iron deficiency

- **Neurologic disease:**
 - Not always reversible
 - Maximal improvement in 6-12 months
HYPOPROLIFERATIVE ANEMIA

Normocytic

- Bone marrow failure
 - Aplastic anemia
 - Pure red cell aplasia
- Myelophthisis – marrow infiltration
 - Solid tumors: breast, prostate, lung
- Endocrinopathies
- Early iron deficiency
- “Mixed” anemias
- Anemia of chronic disease
ANEMIA OF CHRONIC DISEASE
ANEMIA OF CHRONIC DISEASE

- Most common anemia in hospitalized patients
- Associated conditions:
 - Chronic infections
 - Chronic inflammatory conditions
 - Autoimmune disorders
 - Malignancy
 - Trauma, tissue injury
ANEMIA OF CHRONIC DISEASE

- Characterized by:
 - Release of proinflammatory cytokines
 - Inadequate iron delivery to the marrow, despite normal or increased iron stores
 - Relatively low erythropoietin levels
 - Decreased marrow response to erythropoietin
 - Mildly shortened red cell survival

- This is a diagnosis of exclusion – all other possible causes of anemia must be ruled out
ANEMIA OF CHRONIC DISEASE

○ Laboratory features:
 ● CBC: 80% normocytic normochromic
 20% microcytic hypochromic
 ● ↑ Sed Rate
 ● ↓ Serum iron levels
 ● ↓ Serum transferrin levels (TIBC)
 ● ↑ Serum ferritin levels
 ● ↑ Bone marrow iron stores
ANEMIA OF CHRONIC DISEASE

- Manage, treat underlying disorder
- Transfusions only if < 8g/dl or physiologic compromise
- Recombinant EPO useful in:
 - Uremic anemia (50-150 U/kg TIW)
 - HIV infection
 - RA & other collagen diseases
 - Malignancies (300 U/kg TIW)
 - Multiple myeloma
ANEMIA - Etiologies

- Blood loss
- Primary failure of RBC production (diminished erythropoiesis or hypoproliferative)
- Accelerated RBC destruction (hemolysis, hemoglobinopathies)
HEMOLYTIC ANEMIA - Characteristics

- Shortening of the normal RBC life span
 - Premature destruction, survival <15 days
- Accumulation of Hgb catabolism products
 - Extravascular
 - Increased bilirubin production (jaundice)
 - Increased urinary and fecal urobilinogen
 - Intravascular
 - Decreased serum haptoglobin levels
 - Hemoglobin (Coca-cola), hemosiderin in urine
- Marked increase in BM erythropoiesis
HEMOLYSIS - Secondary Effects

- Reticulocytosis, red cell polychromasia
- Erythroid hyperplasia of the bone marrow
 - In chronic hemolysis
- Sequestration of cells in spleen
 - Work hypertrophy (SPLENOMEGALY)
- Increased folic acid requirements
 - May lead to megaloblastic anemia
- Increased uric acid production
 - May lead to uric acid nephropathy
HEMOLYSIS - Clinical Evaluation

- History of:
 - Rapid vs. gradual onset of symptoms
 - Fatigue, weakness, dark urine
 - Use of drugs: oxidative, immunogenic
 - Unexplained deep vein thrombosis
 - Anemia since childhood
 - Surgeries: splenectomy or cholecystectomy

- Family history of:
 - Anemia
 - Splenomegaly or splenectomies
 - Gallstones or cholecystectomies

- Examine for:
 - Pallor, jaundice
 - Splenomegaly, leg ulcers
HEMOLYSIS - Laboratory Evaluation

<table>
<thead>
<tr>
<th>BASIC</th>
<th>SPECIFIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reticulocyte count</td>
<td>Osmotic fragility test</td>
</tr>
<tr>
<td>LDH</td>
<td>RBC protein analysis</td>
</tr>
<tr>
<td>Bilirubin total, indirect</td>
<td>G6PD assay</td>
</tr>
<tr>
<td>Haptoglobin levels</td>
<td>Sickle preparation</td>
</tr>
<tr>
<td>Urine hemosiderin</td>
<td>Hgb electrophoresis</td>
</tr>
<tr>
<td>Peripheral Blood Smear evaluation</td>
<td>Direct Coombs test</td>
</tr>
<tr>
<td></td>
<td>Cold agglutinins</td>
</tr>
<tr>
<td></td>
<td>Sugar water, Ham test</td>
</tr>
</tbody>
</table>
Hereditary Hemolytic Anemias

- **Membrane Defects**
 - Hereditary Spherocytosis
 - Hereditary Elliptocytosis
 - Hereditary Pyropoikilocytosis
 - Hereditary Stomatocytosis

- **Enzyme Defects**
 - Glucose-6-phosphatase dehydrogenase
 - Pyruvate kinase
 - Pyrimidine-5-nucleotidase
 - Triose phosphate isomerase

- **Hemoglobin Defects**
 - Hemoglobin S
 - Hemoglobin C, D, E
 - Unstable Hgb variants

- **Thalassemia Syndromes**
 - Alpha thalassemia
 - Beta thalassemia
HEREDITARY SPHEROCYTOSIS

MOLECULAR DEFECTS
- Ankyrin gene mutations causing spectrin and ankyrin deficiency (most common)
- Band 3 gene mutations (20% cases)
- α-spectrin gene mutations (autosomal recessive)

CLINICAL FEATURES
- Prevalence 1/5000 (of North Europe ancestry)
- Autosomal dominant (75%)
- Autosomal recessive (more severe disease)
HEREDITARY SPHEROCYTOSIS

DIAGNOSIS
- Family history
- Clinical findings
- Blood Morphology:
 SPHEROCYTES

Specific test:
Osmotic fragility test
HEREDITARY SPHEROCYTOSIS

CLINICAL PRESENTATION
- Anemia, splenomegaly
- Intermittent jaundice
- Hemolysis after infections
- Gallstones (43-85%)
- Asymptomatic (20-30%)

TREATMENT
- Splenectomy: >10 years old
- Vaccines: pneumococcal, meningococcal, influenza
- Folic acid supplementation
G6PD DEFICIENCY

GENETIC VARIANTS
- G6PD A-: 10% of American blacks
 - RBC’s have 10-60% enzyme, decay in older cells
- Mediterranean: populations of Middle East
 - RBC’s have <10% enzyme activity

CLINICAL FEATURES (G6PD A- Variant)
- X-linked inheritance
- No anemia in steady state
- Acute hemolysis occur 2-3 days after insult
- Hemolysis is self-limited
 - Recovery due to reticulocytosis
G6PD DEFICIENCY

G6PD A- Variant:
- Acute hemolysis occur with:
 - Infections
 - Diabetic coma
 - Liver, renal disease
 - Use of oxidant drugs

G6PD^{Med} Variant:
- Neonatal jaundice
- Favism
 - Reaction to fava beans
- Chronic continuous hemolysis
 - Congenital nonspherocytic hemolytic anemia

OXIDANT DRUGS
- Sulfonamides
- Nitrofurantoin
- Nalidixic Acid
- Dapsone
- Chloramphenicol
- Doxorubicin
- Antimalarials
- Aminosalicylic Acid
- Phenacetin
- Probenecid
- Procainamide
- Vitamin C and K
- High-dose Aspirin
G6PD DEFICIENCY

BLOOD MORPHOLOGY

- Bite cells
- Blister cells
- Spherocytes
- Reticulocytes
 - New methylene blue stain
- Heinz bodies
 - Crystal violet stain
G6PD DEFICIENCY

DIAGNOSIS:
- Screening test:
 - Supravital stain (methylene blue)
- Definitive test:
 - G6PD Assay

TREATMENT:
- Treat underlying infections or diseases
- Avoid oxidant drugs
- Splenectomy
 - for those with chronic hemolysis
SICKLE CELL ANEMIA

MOLECULAR DEFECT
- Point mutation:
 - valine \rightarrow glutamic acid at β globin chain
- Resultant hemoglobin (Hb S) has abnormal physiochemical properties

CLINICAL FEATURES
- SICKLE CELL TRAIT:
 - Heterozygous \rightarrow 40% is HbS
 - Patient is basically asymptomatic
- SICKLE CELL ANEMIA:
 - Homozygous \rightarrow Almost all is HbS
 - Patient has full clinical syndrome
SICKLE CELL ANEMIA

Major Clinical Problems

Chronic Hemolysis
- Severe anemia
- Reticulocytosis
- Leukocytosis
- Thrombocytosis

Chronic Hyperbilirubinemia
- Jaundice
- Gallstones
- Liver disease

Vaso-occlusive Complications
- Ischemia (painful crisis)
- Infarctions
- Asplenia
SICKLE CELL ANEMIA

CLINICAL MANIFESTATIONS

<table>
<thead>
<tr>
<th>ORGAN</th>
<th>ACUTE</th>
<th>CHRONIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pulmonary</td>
<td>Acute chest syndrome</td>
<td>Chronic hypoxemia</td>
</tr>
<tr>
<td>Genito-urinary</td>
<td>Hematuria, Papillary necrosis</td>
<td>Hyposthenuria, Tubular defects</td>
</tr>
<tr>
<td>Hepatobiliary</td>
<td>RUQ syndrome, Viral hepatitis</td>
<td>Cholelithiasis, Sickle hepatopathy</td>
</tr>
<tr>
<td>Cardio-vascular</td>
<td>Angina, Ischemic infarcts</td>
<td>Cardiomegaly, Heart failure</td>
</tr>
</tbody>
</table>
SICKLE CELL ANEMIA

CLINICAL MANIFESTATIONS

<table>
<thead>
<tr>
<th>ORGAN</th>
<th>ACUTE</th>
<th>CHRONIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ocular</td>
<td>Retinal ischemia, hemorrhage, detachment</td>
<td>Proliferative retinopathy</td>
</tr>
<tr>
<td>Neurologic</td>
<td>TIA’s, Thrombotic & hemorrhagic strokes, Seizures</td>
<td>Spinal disease Neo-vascularization Aneurysm formation</td>
</tr>
<tr>
<td>Skin</td>
<td></td>
<td>Skin ulcers</td>
</tr>
<tr>
<td>Skeletal</td>
<td>Osteomyelitis (Salmonella) Bony infarcts</td>
<td>Avascular necrosis X-ray abnormalities (fishmouth deformity)</td>
</tr>
</tbody>
</table>
SICKLE CELL ANEMIA

DIAGNOSIS

- Screening test
 - Sickle cell preparation
 - Solubility test
- Definitive test
 - Hgb electrophoresis
- Prenatal diagnosis
 - Mst II Southern blot
 - PCR

MORPHOLOGY

- Sickle cells
- Polychromasia
- Reticulocytes
- Howell-Jolly bodies
SICKLE CELL ANEMIA

SUPPORTIVE THERAPY

- Painful Crisis
 - Analgesia, hydration, oxygen
 - Treat infections
- Hemolytic Crisis
 - Blood transfusions
 - Iron chelation therapy
 - Treat infections
 - Folic Acid – chronic use
- Life-threatening Vasoocclusion
 - Exchange transfusions
- Prophylaxis
 - Penicillin
 - Vaccines

TREATMENT

- BM transplantation
- Hydroxyurea (Hydrea)
 - Induces HbF
 - Retards HbS polymerization
 - Reduces number and severity of painful crisis
THALASSEMAIA SYNDROMES

- Heterogenous group of inherited anemias
- Defective synthesis of the alpha or beta globin chains:
 - Alpha thalassemia
 - Beta thalassemia
- Most common in Mediterranean area, Arabia, India and Southeast Asia
ALPHA THALASSEMIA

<table>
<thead>
<tr>
<th>SYNDROME</th>
<th>GENETIC DEFECT</th>
<th>CLINICAL FEATURES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silent carrier</td>
<td>$\alpha^{-}/\alpha \alpha$</td>
<td>None</td>
</tr>
<tr>
<td>Trait</td>
<td>$\alpha^-/\alpha^- \quad \alpha^-/\alpha \alpha$</td>
<td>Mild microcytic anemia</td>
</tr>
<tr>
<td>Hemoglobin H</td>
<td>$\alpha^-/\alpha^- \quad \alpha^-/\alpha \alpha$</td>
<td>Mild anemia, hemolysis, not transfusion dependent</td>
</tr>
<tr>
<td>Hydrops fetalis</td>
<td>$\alpha^-/\alpha^- \quad \alpha^-/\alpha \alpha$</td>
<td>Severe anemia, anasarca, death in utero</td>
</tr>
</tbody>
</table>
Beta Thalassemia

<table>
<thead>
<tr>
<th>SYNDROME</th>
<th>GENETIC DEFECT</th>
<th>CLINICAL FEATURES</th>
</tr>
</thead>
</table>
| Minor | β^o / β
 | β^+ / β | Mild microcytic anemia |
| Intermedia | β^o / β
 | β^+ / β^+ | Anemia, not transfusion dependent, iron overload |
| Major | β^o / β^o
 | β^+ / β^+ | “Cooley’s anemia”
 | Severe anemia, transfusion dependent, iron overload |
THALASSEMIA MAJOR

CLINICAL FEATURES

- Severe anemia
 - ineffective erythropoiesis
 - extravascular hemolysis
- Marked marrow expansion
 - skeletal deformities
 - “chipmunk” facies
- Extramedullary hematopoiesis
 - Hepatosplenomegaly
- Systemic iron overload

MANAGEMENT

- Blood transfusions
- Iron chelation
- Splenectomy (>5 yrs)
- BM Transplant
- Prenatal diagnosis
 - DNA analysis
β THALASSEMIA TRAIT

CLINICAL FEATURES:
- Mild anemia, asymptomatic
- CBC: ↓ MCV
 ↓ MCH
 ↑ RBC number
- Dx: ↑ HbA2
 ↑ HbF
- Diff Dx: iron deficiency

MORPHOLOGY:
- Hypochromia
- Microcytosis
- Target cells
- Teardrops
- Basophilic stippling
Acquired Hemolytic Anemias

- Immune Hemolytic Anemias
 - IgG-induced (Warm antibody)
 - IgM-induced (Cold hemagglutinins)
 - Drug-induced

- Chronic Intravascular Hemolysis
 - Paroxysmal Nocturnal Hemoglobinemia
 - Mechanical Hemolysis
 - Heart valve hemolysis
 - March hemoglobinuria
 - Microangiopathic Hemolytic Anemia
AUTOIMMUNE HEMOLYTIC ANEMIA

- Most common: **IgG** - directed against RBC Ag (“Rh”)
- Ab reactive at body temperature (warm)
- IgG-coated RBC’s are recognized by Fc receptors of macrophages and trigger erythrophagocytosis
 - In **spleen**, liver, bone marrow
 - Hemolysis is mostly extravascular
 - RBC’s also coated with C$_3$B (by complement activation) have an accelerated clearance

- Manifests anemia, jaundice & splenomegaly
- Associated to autoimmune disorders (SLE) and lymphoproliferative disorders (CLL, NHL)
IgG - IMMUNE HEMOLYTIC ANEMIA

TREATMENT

- Prednisone (40-120 mg/day)
 - 80% response, 25% sustained
- Splenectomy
 - 50-70% response
- Immunosuppressiessive therapy
 - Azathioprine, cyclosporine
 - Cyclophosphamide, Vinca
 - 50% response, long-term
- High dose gammaglobulin
 - 50-60% response, expensive
- Anti-CD20 Ab (Rituximab)

DIAGNOSIS

- Morphology: spherocytes
- Positive antiglobulin test (direct Coombs)
IgM - IMMUNE HEMOLYTIC ANEMIA

- IgM - directed against RBC Ag ("I", "i", "Pr")
- Ab reactive at low temperatures (cold)
- Ag-Ab complex on surface of RBC activates classical complement pathway (C-dependent hemolysis)
 - Coats RBC with C_3b, cleared by liver (extravascular)
 - RBC destroyed directly (intravascular)

COLD AGGLUTININ DISEASE

- Monoclonal IgM κ against "I", very high titers (>1:1000)
- Usually affects the elderly, related to Waldenstrom
- Manifests acrocyanosis of ears, nose tip, toes and fingers
- Skin color is dusky blue tone that blanches
IgM - IMMUNE HEMOLYTIC ANEMIA

Cold agglutinins associated to other diseases

- To Mycoplasma pneumonia
 - IgM polyclonal Ab against “I”
 - Splenomegaly in most, acrocyanosis in unusual
 - Disease is self-resolving in 2 to 3 weeks

- To Infectious mononucleosis
 - IgM polyclonal Ab against “i”
 - Hepatosplenomegaly in most, hemolysis in 3%
 - Disease duration from 1 to 2 months

- To Lymphoproliferative / Autoimmune disorders (CLL, NHL, SLE)
 - IgM κ monoclonal Ab against “I” or “i”
IgM - IMMUNE HEMOLYTIC ANEMIA

TREATMENT:
- Keep patient warm
- Alkylating agents (Cytoxan, Leukeran)
 - 50-60% response rate
- Plasmapheresis
 - Effective, short-term, expensive
- Steroids, short-term
 - For Infectious mononucleosis
- Tetracycllin or Erythromycin
 - For Mycoplasma pneumonia

DIAGNOSIS:
- Morphology: RBC agglutination
- Cold agglutinins (Anti-I or Anti-i)
- Coombs test (+ for complement)
DRUG - INDUCED HEMOLYTIC ANEMIA

DIAGNOSIS
- Hapten type
 - With high-dose penicillin
 - IgG +/- C₃b coats RBC
- Quinidine type (inocent bystander)
 - Ab against drug bound to protein
 - Activates C, C₃b coats RBC
- Alpha-methyldopa type (Aldomet)
 - Ab against Rh Ag
 - 25% develop (+) Coombs test
 - <1% hemolyze
- Nonspecific coating
 - Drug binds to RBC’s, proteins coat
 - With Cephlothin, rare hemolysis

TREATMENT
- D/C drug
- Steroids
PAROXYSMAL NOCTURNAL HEMOGLOBINURIA

Clonal BM disorder affecting stem cells
- Deficiency of protective membrane proteins (CD59, CD55)
- PNH cells are very sensitive to activated complement

CLINICAL FEATURES

- Anemia, reticulocytopenia, leukopenia, thrombocytopenia
- Spherocytes, microcytosis, hypochromia (2° iron deficiency)
- Chronic intravascular hemolysis (most common)
- Paroxysmal hemolysis, nocturnal hemoglobinurinia (<25%)
- Episodic severe abdominal, back & musculoskeletal pain
- Venous thrombosis of major vessels (50% mortality)
- Evolves to aplastic anemia or acute leukemia (5-10%)
PAROXYSMAL NOCTURNAL HEMOGLOBINURIA

DIAGNOSIS
- Sugar water, acidified serum (Ham) tests
- Flow cytometry: Bimodal distribution, CD59- CD55-

SUPPORTIVE THERAPY
- Transfusion of filtered PRBC (removal of WBC)
- Folic acid, iron supplements
- Narcotics, hydration
- +/- Prednisone, Danazol

TREATMENT
- Bone marrow transplant
- Antithymocytic globulin
- Monoclonal Ab against C5 (Eculizumab) q 2 wk IV
MECHANICAL HEMOLYSIS

Heart valve hemolysis, March hemoglobinuria
Microangiopathic Hemolytic Anemia

- **Pathogenesis:**
 - Direct trauma to RBC’s

- **Blood morphology:**
 - Schistocytes, helmet cells, microspherocytosis

- **Diagnostic tests:**
 - Plasma hemoglobin - positive
 - Urine hemoglobin - positive
 - Urine hemosiderin - positive
 - Haptoglobin - decreased
MICROANGIOPATHIC HEMOLYTIC ANEMIA

- Fibrin deposits in small blood vessels cause fragmentation and deformation of the RBC’s
- Often are also thrombocytopenic
- Associated with several syndromes

TTP, HUS, DIC
- malignant hypertension
- pulmonary hypertension
- preeclampsia, eclampsia
- acute glomerulonephritis
- acute renal failure
- renal allograft rejection
- collagen vascular diseases
- SLE, scleroderma
- Wegener’s granulomatosis
- periarteritis nodosa
- carcinomatosis, hemangiomas
- Kasabach-Meritt syndrome
- viral (HIV), bacterial infections
- toxic effect of mitomycin C